YEAR 12 BIOLOGY CURRICULUM PROGRESSION OVERVIEW Pupils will build on their biology learning from KS4, extending their knowledge and understanding of biological molecules, cells & the immune system, exchange and transport in living organisms and the basics of genetics and diversity. They will further build upon this learning by grasping more difficult concepts such as photosynthesis, respiration, homeostasis and more complicated applications of genetic technology. Students will become competent at applying their learning in familiar and unfamiliar contexts, and in the interpretation and evaluation of experimental data, including the use of statistics to assess the significance of experimental results. | | Autumn Term 1 | Autumn Term 2 | Spring Term 1 | Spring Term 2 | Summer Term 1 | Summer Term 2 | |--|--|---|--|---|--|---| | Topic | Eukaryotic and
Prokaryotic cell
structure.
Monomers and
Polymers | Cells arise from other
cells, Transport across
cell membrane
Structure of DNA and
RNA | Cell recognition and
the immune system
DNA replication | Surface area to volume
ration, Gas exchange
ATP | Digestion and
absorption
Water | Mass transport
Inorganic lons | | Core
Knowledge/
Threshold
Concept | function of biological molecules, including carbohydrates, lipids, enzymes, DNA, RNA, Water, ATP and inorganic ions. The structure and function of eukaryotic & prokaryotic cells Monomers are the | transport and osmosis. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are important information-carrying molecules. | embedded proteins. Some of these are involved in cell signalling – communication between cells. Others act as antigens, allowing recognition of 'self' and 'foreign' cells by the immune system adenine and three phosphate groups. The semi-conservative replication of DNA | environment of a cell or organism is different from its external environment. The exchange of substances between the internal and external environments | hydrolysed to
smaller molecules that
can be absorbed across
cell membranes.
Water is a major
component of cells. It
has several properties | Mass transport maintains the final diffusion gradients that bring substances to and from the cell membranes of individual cells. Inorganic ions occur in solution in the cytoplasm and body fluids of organisms, some in high concentrations and others in very low concentrations. | | | examples of monomers. | | | | | | |----------------------------------|--|--|----------------------------------|---|---|-------------------------| | | Following AQA specification - Easier topics (which link most closely to GCSE prior learning) are delivered in Y12 in order to ensure this learning is consolidated and extended. | regular completion of required practicals | gained in Y12, for example, | | | | | Assessment
Opportunitie
s: | Focus of the formula of the following following | on intervention followin
rming students
weekly multiple choice
asive AfL in lessons
starters (on recent or m | quizzes to test recall of | ents complete WINs and
prior learning
very lesson to support re | targeted ZigZag and othe | | | | • Standa rdised block test (Oct). | | • Standa
rdised Mock
(Jan) | Standardised
block test.
(Feb/Mar) | Standa rdised block test (Apr) Re-test for underperformi ng students (Feb) | • Full AS
Mock (Jun) | | Learning at
Home | · · | uestions | CSEScience, YouTube, e | tc.) | (. 52) | | | | • Recall a | Recall activities (quizzes, revision tasks, etc.) | | | | | | | |--|--|---|--|---|---|---|--|--| | Key
Vocabulary | Covalent Bond
Ionic Bond
Hydrogen Bond
Polar Molecule
Monomer
Golgi, Lysosome
Ribosome, Cell Wall
Vacuole | Nucleotide Polynucleotide Phosphodiester bond Plasma Membrane Phospholipid Bilayer Protein Channel Carrier Protein Glycoprotein | Amino group Carboxyl group R-group Peptide bond Polypeptide Lymphocyte Phagocyte Phagocytosis Lysosome Phagosome | Surface area: volume ratio Exchange surface Concentration gradient ATP Synthase ATP Hydrolase Polymerases | Specific heat capacity
Latent heat of
Vaporisation
Cohesion
Surface tension | High affinity Low affinity Oxygen dissociation curve Solvent Inorganic ions Transparent | | | | Spiritual,
Moral, Social
and Cultural
concepts
covered | Moral: The ability to re | | een right and wrong a | rs and the world around
nd applying it to our owr
at shape our heritage. | | | | | | Links to
careers and
the world of
work | | the learning in lessons t
s and in Ecology will per | | | pupils will look at the c | irculatory system which | | | ## YEAR 13 BIOLOGY CURRICULUM PROGRESSION OVERVIEW Pupils will build on their biology learning from Year 12, extending their knowledge and understanding of Energy transfers in and between organisms, Organisms respond to changes in their internal and external environments, Genetics, populations, evolution and ecosystems and the control of gene expression. They will further build upon this learning by grasping more difficult concepts such as photosynthesis, respiration, homeostasis and more complicated applications of genetic technology. Students will become competent at applying their learning in familiar and unfamiliar contexts, and in the interpretation and evaluation of experimental data, including the use of statistics to assess the significance of experimental results. | | Autumn Term 1 | Autumn Term 2 | Spring Term 1 | Spring Term 2 | Summer Term 1 | Summer Term
2 | |--|--|--|--|--|---|--| | Topic | Respiration | Energy and
Ecosystems
Population | Organisms respond to
changes in their
environment
Evolution may lead to
speciation | Populations in | Skeletal muscles
The control of gene
expression | Homeostasis
Gene technologies | | Core
Knowledge/
Threshold
Concept | of energy. In photosynthesis, light is absorbed by chlorophyll and this is linked to the production of ATP. In respiration, various substances are used as respiratory substrates. The genotype is the genetic constitution of an organism. The phenotype is the | plants synthesise organic compounds from atmospheric, or aquatic, carbon dioxide. Species exist as one or more populations. A population as a group of organisms of the same species occupying a | A stimulus is a change in the internal or external environment. A receptor detects a stimulus. A coordinator formulates a suitable response to a stimulus. An effector produces a response. Individuals within a population of a species may show a wide range of variation in phenotype. This is due to genetic and environmental | membrane permeability, electrochemical gradients and the movement of sodium ions and potassium ions. Populations of different species form a community. A community and the non-living | antagonistic pairs against
an incompressible
skeleton.
Cells are able to control
their metabolic activities
by regulating the
transcription and
translation of
their genome | Homeostasis in mammals involves physiological control systems that maintain the internal environment within restricted limits. Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to another. | | | interaction with the environment. | | | | | | |----------------------------------|---|--|---|--|--|---------------------------------| | learning
now? | from Year 12 content. | The ability to recall and apply learning of A level content (crucial knowledge) to familiar contexts and unfamiliar contexts. | ability to follow written procedures, apply investigative approaches and methods when using instruments and equipment, the safe use of practical equipment and materials, making and recording observations & | function
Biodiversity
Mitosis | | | | Assessment
Opportunitie
s: | Focus of for underperfor underperfor New 4- Responsion Recall segulares Regulares End of segulares | on intervention followir
rming students
weekly multiple-choice
sive AfL in lessons
starters (on recent or m
structured self and pe
year mock exams | quizzes to test recall of
nore synoptic content) e
eer assessment (WINs) in | ents complete WINs and
prior learning
very lesson to support re
n lessons | l targeted ZigZag and othe | 3 | | | • Standa
rdised
Mock (Sep) | Standa
rdised block
test. (Oct/Nov) | rdised Mock | Standardised
block test.
(Feb/Mar) | Standa rdised block test (Apr)Re-test for | • Full A
level Mock
(Jun) | | Learning at
Home | • Online | questions | MyGCSEScience, YouTube, e | etc.) | underperforn
ng students
(Feb) | ni | |---|--|--|--|---|--|---| | Key
Vocabulary | Genetic Diversity Allele frequency Gene pool Photolysis Oxidation Reduction Co-enzyme NADP NADPH | Biomass Calorimetry Producer Consumer Ecosystem Population Community Habitat Niche | Taxis Kinesis Tropism IAA Normal distribution curve Biodiversity Species | Peripheral nervous system Neurone Sensory neurons Motor neurons Species diversity Ecosystem Diversity Genetic diversity Species richness Index of diversity | Skeletal muscle
Smooth muscle
Cardiac muscle
Sarcolemma
Sarcoplasm | Osmoreceptors ADH (antidiuretic hormone) Recombinant DNA Promoter Terminator DNA polymerase Restriction endonuclease Gene machine Oligonucleotide | | Spiritual, Moral, Social and Cultural concepts covered Links to careers and the world of work | Spiritual: A sense of enjoyment in learning about ourselves and others and the world around us. Moral: The ability to recognise difference between right and wrong and applying it to our own lives. Social: Understand and appreciate the range of cultural influences that shape our heritage. Staff will regularly link the learning in lessons to real-life contexts. For example, in Biology the pupils will look at the circulatory system which links to medical careers and in Ecology will perform experiments like a biologist. | | | | | |